

Association of Continuous Glucose Monitoring with Diabetes Control for Patients with Type 2 Diabetes Mellitus in an Integrated Delivery Network

BACKGROUND

- Patients with insulin-dependent diabetes mellitus (IDDM) have been dependent on at-home devices for the self-monitoring of blood glucose (SMBG) to make insulin dosing decisions and to understand patterns of hyperglycemia and hypoglycemia. The introduction and development of continuous glucose monitoring (CGM) has enabled more frequent and automated monitoring of glucose throughout the day and overnight. Recent improvements in the affordability of CGM products have allowed greater utilization of CGM technology across various diabetes types, including patients with non-insulin dependent type 2 diabetes mellitus (T2DM).
- As nearly all previous CGM diabetes outcomes research in type 2 diabetics has focused primarily on patients with IDDM¹⁻⁹, this project seeks to better understand utilization and outcomes associated with diabetes control for all patients with T2DM, regardless of insulin use.

PURPOSE / OBJECTIVES

Purpose:

• To determine if using CGM affects health outcomes for patients with T2DM, regardless of outpatient insulin use

Objectives

- To evaluate the association between the use of CGM and indicators of diabetes control, including A1c and acute healthcare utilization, in patients with T2DM.
- To describe the characteristics of T2DM patients at Baylor Scott & White Health (BSWH) who utilize CGM or standard of care (blood glucose test strips) for SMBG.

DISCLOSURES

- This study was approved by the BSWH Institutional Review Board (IRB)
- The authors have no financial disclosures to report.

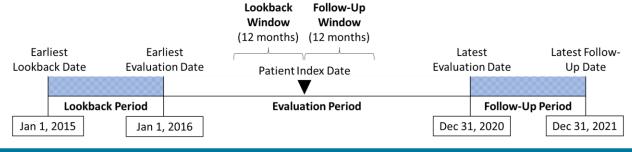
STUDY DESIGN / METHODS

Methods:

- This is a difference-in-differences analysis evaluating change in A1c for patients just before and 6 months after initiation of CGM; compared with patients who newly initiate test strips.
- Emergency department (ED) and acute hospital use was evaluated in the 6 months before and after initiation.
- Propensity score analysis was used to reduce confounding in adjusted models.

Inclusion criteria:

- Patients received at least one outpatient order for a CGM sensor or test strip product at a BSWH facility, and
- Had a concurrent or previous diagnosis of T2DM, and
- Were aged ≥18 years, **and** •
- Had distinct A1c measurements before and after initiation, and • Had body mass index (BMI), blood pressure (BP), and glomerular filtration rate (GFR) measurements ≤12 months prior to initiation


Exclusion criteria:

- History of T1DM or gestational DM
- Previous history of CGM use

Statistical Analysis:

- To estimate difference-in-differences for A1c, a linear mixedeffects model for repeated measures was used, with intercepts included as a random effect.
- To estimate difference-in-differences for ED or acute hospitalization use, a generalized estimating equation was used. Propensity score weighting (PSW) was applied for adjusted models. Weights were determined using inverse probability of treatment weighting (IPTW) to determine the average treatment effect (ATE) for the full population. All baseline covariates (except those used directly as outcomes) were included in the propensity score analysis.

Study Timeline

SETTING

Baylor Scott & White Health (BSWH) is an integrated health system in Texas that includes 52 hospitals and over 800 patient care sites. It is the largest not-for-profit health care system in Texas.

PATIENT CHARACTERISTICS

	Unadjusted Groups		ATE Weighted Groups						
Baseline	CGM	Test Strips	Standardized	CGM	Test Strips	Standardized			
Characteristics	(n = 5 <i>,</i> 297)	(n = 8,865)	Differences	(n = 5 <i>,</i> 297)	(n = 8,865)	Differences			
Sex, %									
Female	48.4	51.4	- 0.060	50.4	50.2	0.002			
Male	51.6	48.6	0.060	49.6	49.8	-0.002			
Age, years - mean (SD)	62.0 (12.4)	65.7 (12.0)	- 0.299	64.5 (12.5)	64.5 (12.1)	-0.005			
Race, %									
Asian	4.3	5.0	- 0.035	4.7	4.6	0.007			
Black	18.1	16.7	0.039	17.7	17.5	0.004			
White Others (under source)	71.1	71.7	- 0.015	71.2	71.5	-0.007			
Other/unknown	6.5	6.6	- 0.003	6.4	6.4	0.001			
Ethnicity, %	16.6	16.4	0.006	17.0	16.7	0.010			
Hispanic or Latino Not Hispanic or Latino	81.2	81.1	0.008	80.7	80.9	-0.006			
Unknown	2.2	2.5	-0.025	2.3	2.4	-0.008			
Primary language, %	2.2	2.5	-0.025	2.5	2.4	-0.003			
English	96.8	94.6	0.107	95.0	95.3	-0.013			
Spanish	2.3	4.0	-0.097	3.6	3.5	0.010			
Other/unknown	0.9	1.4	-0.045	1.4	1.3	0.009			
Marital status, %									
Divorced/Widowed	14.3	16.7	-0.065	16.5	16.0	0.013			
Married	65.9	63.0	0.061	63.2	63.6	-0.008			
Single	14.7	14.7	-0.001	15.0	15.0	0.002			
Other/unknown	5.1	5.6	-0.024	5.3	5.4	-0.008			
Smoking status, %									
Former smoker	29.7	28.8	0.020	28.8	29.2	-0.008			
Never smoker	63.2	63.2	0.001	63.4	63.1	0.006			
Smoker	7.0	7.8	-0.032	7.6	7.5	0.004			
Other/unknown	0.1	0.2	-0.032	0.2	0.2	-0.004			
Hemoglobin A1c, mean (SD)	8.73 (1.92)	8.04 (1.78)	0.373	8.53 (1.89)	8.16 (1.82)	0.198			
BMI, kg/m ² - mean (SD)	33.9 (7.1)	33.0 (7.3)	0.124	33.3 (7.1)	33.3 (7.4)	-0.006			
GFR, mL/min - mean (SD)	79.6 (29.1)	80.4 (26.8)	-0.028	79.9 (27.6)	79.9 (27.6)	< 0.001			
SBP, mmHg - mean (SD)	128.2 (15.0)	128.4 (14.9)	-0.014	128.3 (15.2)	128.3 (15.0)	0.005			
DBP, mmHg - mean (SD)	74.9 (10.0)	75.1 (9.8)	-0.013	75.0 (10.0)	75.0 (9.9)	0.006			
Recent uACR, % Uses insulin, %	5.8 59.7	2.7 24.8	0.156 0.753	4.0 37.9	3.9 37.6	0.006 0.005			
Takes a statin, %	79.2	75.5	0.089	76.5	76.7	-0.004			
Takes antihypertensives, %	86.4	85.4	0.029	85.8	85.8	0.002			
Recent ED visit, %	11.6	10.0	0.054	10.6	10.6	-0.001			
Recent hospitalization, %	6.2	5.8	0.019	5.6	6.5	-0.041			
Primary insurance, %									
Commercial	56.0	42.6	0.269	47.0	46.8	0.004			
Medicaid	0.7	0.6	0.015	0.6	0.6	0.001			
Medicare	43.0	56.4	-0.272	52.0	52.3	-0.005			
Other	0.4	0.4	0.005	0.3	0.3	0.001			
Has Medicaid, %	3.4	3.5	-0.004	3.6	3.6	0.001			
Has Medicare, %	44.8	57.7	-0.262	53.5	53.8	-0.005			
Patient EHR portal active, %	84.8	79.8	0.129	80.8	81.4	-0.016			
Prescriber region, %									
Central Texas	35.9	33.1	0.059	34.7	34.5	0.003			
North Texas	64.1	66.9	-0.059	65.3	65.5	-0.003			
Prescriber type, %									
APP	17.2	12.8	0.126	14.0	14.0	< 0.001			
Physician	82.8	87.2	-0.126	86.0	86.0	< -0.001			
Prescriber department, %	26.4	0.2	0.740	40.5	40.4	0.010			
Endocrinology	36.4	8.2	0.719	18.5	18.1	0.010			
Primary Care Other	61.9 1.8	89.0 2.8	- 0.665 -0.066	78.9	79.4 2 5	-0.012			
Resident prescriber, %	0.8	0.9	-0.086	2.6 0.7	2.5 0.8	0.008 -0.009			
Resident prescriber, %	0.8	0.9	-0.020	0.7	0.8	-0.009			

ABBREVIATIONS

Abbreviation	Meaning	Abbreviation	Meaning
APP	Advanced practice provider	IDDM	Insulin-dependent diabetes mellitus
ATE	Average treatment effect	IPTW	Inverse probability of treatment weighting
BMI	Body mass index	IRB	Institutional review board
BP	Blood pressure	PSW	Propensity score weighting
BSWH	Baylor Scott & White Health	SBP	Systolic blood pressure
CGM	Continuous glucose monitoring	SD	Standard deviation
DBP	Diastolic blood pressure	SMBG	Self-monitoring of blood glucose
DM	Diabetes mellitus	T1DM	Type 1 diabetes mellitus
ED	Emergency department	T2DM	Type 2 diabetes mellitus
EHR	Electronic health record	uACR	Urine albumin-to-creatinine ratio
GFR	Glomerular filtration rate		

- included in the test strip group.
- managed by endocrinology.
- CGM group still had a higher A1c at baseline.

A1c: After 6 Months		justed odel	Adjusted Model	
Least Squares Means	Estimate Std. Error		Estimate	Std. Error
Test Strips				
Baseline A1c	8.04	0.02	8.09	0.02
A1c at 6 months	7.39	0.02	7.42	0.02
CGM				
Baseline A1c	8.73	0.02	8.65	0.02
A1c at 6 months	7.92	0.02	7.91	0.02
Mean Difference	-0.15	0.03	-0.08	0.03

- Nov:11(6):1138-1146.
- Jul;16(4):385-395

TEXAS The University of Texas at Austin College of Pharmacy

RESULTS

After applying inclusion and exclusion criteria, (n = 5,297) patients were included in the CGM group, and (**n** = **8,865**) patients were

CGM initiating patients tended to be younger, speak English primarily, have a higher A1c, use insulin, have primary

commercial insurance, use the patient EHR portal, and be

After propensity score weighting with all available covariates, the

• After 6 months, A1c decreased by an additional 0.15 points in the CGM group when compared with the test strip group. After PSW adjustment, this was a **0.08-point decrease**.

Absolute risk of ED use increased insignificantly by 1.1% with CGM. After PSW adjustment, this was a significant 2.0% increase. • Absolute risk of hospitalization increased insignificantly by 0.5% with CGM; after PSW this was a significant 1.6% increase

DISCUSSION

A modest decrease in A1c was attributed to CGM initiation; however, patients initiating CGM had a higher risk of ED or hospitalization use when compared with test strip initiators. The adjusted model assumes all confounders are included, but there are likely hidden confounders that may predispose CGM initiators to higher acute healthcare utilization.

REFERENCES

Ehrhardt NM, Chellappa M, Walker MS, Fonda SJ, Vigersky RA. The effect of real-time continuous glucose monitoring on glycemic control in patients with type 2 diabetes mellitus. J Diabetes Sci Technol. 2011 May 1;5(3):668-75 Vigersky RA, Fonda SJ, Chellappa M, Walker MS, Ehrhardt NM. Short- and long-term effects of real-time continuous glucose

monitoring in patients with type 2 diabetes. Diabetes Care. 2012 Jan;35(1):32-8. Pazos-Couselo M, García-López JM, González-Rodríguez M, Gude F, Mayán-Santos JM, Rodríguez-Segade S, Rodríguez-García J,

Casanueva F. High incidence of hypoglycemia in stable insulin-treated type 2 diabetes mellitus: continuous glucose monitoring vs. self-monitored blood glucose. Observational prospective study. Can J Diabetes. 2015 Oct;39(5):428-33. Beck RW et al.; DIAMOND Study Group. Continuous Glucose Monitoring Versus Usual Care in Patients With Type 2 Diabetes Receiving

Multiple Daily Insulin Injections: A Randomized Trial. Ann Intern Med. 2017 Sep 19;167(6):365-374. Ruedy KJ, Parkin CG, Riddlesworth TD, Graham C; DIAMOND Study Group. Continuous Glucose Monitoring in Older Adults With Type 1 and Type 2 Diabetes Using Multiple Daily Injections of Insulin: Results From the DIAMOND Trial. J Diabetes Sci Technol. 2017

Ajjan RA, Jackson N, Thomson SA. Reduction in HbA1c using professional flash glucose monitoring in insulin-treated type 2 diabetes patients managed in primary and secondary care settings: A pilot, multicentre, randomised controlled trial. Diab Vasc Dis Res. 2019

Fokkert M, van Dijk P, Edens M, Barents E, Mollema J, Slingerland R, Gans R, Bilo H. Improved well-being and decreased disease burden after 1-year use of flash glucose monitoring (FLARE-NL4). BMJ Open Diabetes Res Care. 2019 Dec 9;7(1):e000809. Martens T et al.; MOBILE Study Group. Effect of Continuous Glucose Monitoring on Glycemic Control in Patients With Type 2 Diabetes Treated With Basal Insulin: A Randomized Clinical Trial. JAMA. 2021 Jun 8;325(22):2262-2272. Karter AJ, Parker MM, Moffet HH, Gilliam LK, Dlott R. Association of Real-time Continuous Glucose Monitoring With Glycemic Control and Acute Metabolic Events Among Patients With Insulin-Treated Diabetes. JAMA. 2021 Jun 8;325(22):2273-2284.