Case Presentations
Aortic Stenosis

Joseph Stafford, MD
Cardiovascular Fellow
Goals

• Present various encounters with severe aortic stenosis
• Discuss considerations for surgical aortic valve replacement (SAVR) vs transcatheter aortic valve replacement (TAVR)
 • Pre operative risk – is this still a factor?
 • Anatomic considerations
 • Patient age
 • Co-morbidities, co-existing CAD
Case 1

- 55 year old F referred to cardiology by her PCP due to abnormal murmur that prompted an echocardiogram.
- No other significant medical history aside from moderate obesity w/ BMI 38 kg/m2
 - No prior cardiac history
 - No history of smoking, CKD, CVA, DM
- Patient endorsed no HF symptoms, chest pain, dyspnea, syncope endorsed, however, functional capacity uncertain.
Case 1

Echo Summary

1. Mild LVH with normal LV systolic function, EF 73%. No wall motion abnormalities.
2. The aortic valve appears tricuspid with severe stenosis.
 1. AV peak velocity is 4.4 m/s.
 2. AV mean gradient is 51.6 mmHg
 3. Aortic valve area is 0.8
 4. Dimensionless index of 0.19.
Case 1

- How should we proceed in the seemingly asymptomatic patient with severe aortic stenosis?
Case 1

- Exercise ECG was performed due to uncertainty of functional status.

- Results of Exercise Stress Test
 - Patient **exercised 4:34 min** but stopped due to shortness of breath.
 - No chest pain. No diagnostic ST changes demonstrated.

- Patient subsequently referred to Cardiology Valve Clinic for further evaluation.
Case 1

- Patient seen by Cardiology and Cardiothoracic surgeons in clinic.

- Aortic valve replacement recommended
 - How best to proceed?
Case 1

• Decision was made by the valve team to proceed with mechanical SAVR due to the patient’s age.

• Surgery recently performed -- post operative course has been unremarkable.
Case 2

• 71 year old M referred to cardiology for new diagnosis of severe AS after a 3/6 systolic murmur was detected during Medicare wellness visit.

• Past medical history includes:
 • Hypertension
 • GERD
 • OSA compliant with CPAP
 • No significant cardiac history

• During his appointment, he described several months of steadily worsening dyspnea with exertion, and subsequent decrease in exercise tolerance.
Case 2

Echo Summary

1. Normal LV size and systolic function, EF 60%
2. Calcified aortic valve with **severe aortic stenosis**.
 1. Vmax of 5 m/s
 2. mean gradient of 64mmHg
 3. Calculated AVA 0.74cm²
Case 2

• Patient subsequently referred to the Valve Clinic for consideration of AVR.
• Pre AVR assessment:
 • CTA chest was remarkable for functional bicuspid AV. Aortic root moderately dilated to 4.6 cm.
 • Coronary angiography showed mild diffuse coronary artery disease without flow limiting coronary stenosis.

• After discussing the results of the CTA, the patient was considered NOT to have congenital bicuspid AV.

• What are the options for this patient?
Case 2

Two options the patient/physicians considered:

- Undergo TAVR with routine imaging surveillance of thoracic aortic aneurysm
 OR
- Surgical AVR with aneurysm repair
Case 2

• After extensive discussion with the patient, he ultimately chose TAVR over SAVR/aneurysm repair.

• Patient recently underwent TAVR with unremarkable post-op course. Functional capacity improving.
Case 3

• 65 yo M with prior history of moderate aortic stenosis presenting to cardiology clinic for evaluation of worsening chest pain and shortness of breath over a 3 month period.

• PMH
 • Hypertension
 • Hyperlipidemia
 • Diabetes Mellitus, Type II

• SH
 • Prior tobacco abuse, quit 46 years ago
 • No EtOH or drug abuse
Case 3

- Repeat echocardiogram performed:
 - Normal LV size and function, EF 60-64%. No wall motion abnormalities.
 - Aortic valve shows progression from moderate to severe aortic stenosis
 - Peak velocity 4.3 m/s
 - Mean gradient 43 mmHg
 - AVA 0.8 cm2
Case 3

- Due to these symptoms and echo findings, patient was referred for coronary angiography prior to Valve Clinic referral.
Coronary Angiography Summary

- Left Main
 - Normal
- LAD
 - 60% Proximal stenosis; collaterals providing flow from distal LAD to RCA system
- LCX
 - Mild CAD
- RCA
 - Chronic total occlusion of the proximal RCA
- FFR performed of the LAD -> 0.82

Collaterals from left to right
Case 3

• Complex case due to concomitant CAD.
 • Option 1: SAVR with concomitant bypass surgery
 • Single vessel disease involving the RCA with borderline proximal LAD disease in diabetic patient.
 • Option 2: TAVR with continued medical therapy for coronary artery disease, possible intervention if needed in the future.

• How should we proceed?
Case 3

• After long discussion between the patient/family and valve team, patient opted for SAVR with bypass surgery.
Case 4

- 85 yo M presenting to Valve Clinic from an outside cardiologist for significant dyspnea with exertion after 10 ft of ambulation.

- Initial evaluation at that clinic remarkable for severe aortic stenosis and complex coronary artery disease.

- Echo Interpretation summary:
 - Normal LV size and mildly reduced systolic function, EF 45%.
 - Severely calcified aortic valve, AVA 0.5 cm2, mean gradient 47 mmHg.
Case 4 – Coronary Angiography
Case 4 – Coronary Angiography

LAD

LCX
Coronary Angiogram Summary

- Patient also noted to have very complex coronary artery disease during evaluation:
 - Left main
 - 70% distal stenosis
 - LAD
 - 70% proximal stenosis; continuation from the distal LM disease
 - LCX
 - 80% stenosis in the mid portion.
 - RCA
 - 80% stenosis distal RCA; 99% stenosis in PDA
Case 4

• Case complicated by multiple comorbidities affecting surgical risk:
 • Age
 • Poor mobility for recovery, morbid obesity
 • Long-standing tobacco abuse -> COPD

• STS score 4.3% with frailty score of 2

• What are the options for this patient?
Case 4

- Valve team discussed options with patient regard surgical AVR with concomitant bypass surgery vs TAVR with complex PCI.
 - Due to surgical risk, TAVR + PCI was pursued
Case 4

• Outcome
 • Patient successfully underwent PCI to left main, mid RCA, PDA and LCX with IABP assistance.
 • Subsequent TAVR performed with uneventful post-op course.
 • At 3 year follow up, patient is doing well clinically without shortness of breath, chest pain or HF symptoms.